• ReYOUvenation - The Science of a Better You

    Innovative Anti-Aging Stem Cell Treatment for your Skin, Brain & Body. 

  • Stem Cell Anti-Aging Treatment

    Learn about the latest Stem Cell 2.0 therapy

    designed for you, from your own stem cells.

  • ANOVA Institute for Regenerative Medicine - The Science of a Younger You

    “Ever since we invented fire and the wheel, we've been demonstrating both our

    ability and inherent desire to fix things that we don't like about ourselves“

    - Aubrey de Grey

Stem Cell Anti-Aging Treatment - Why We Age

Aging is a complex biological process in which cells become progressively damaged over time and eventually die. As we age, fewer and fewer cells are replaced, slowly wearing out our bodies. This means that over time the damage accumulated in our bodies will become so immense, that at one point the body will not be able to cope with it - ultimately leading to our death.

Environmental factors such as exposure to sun ("solar radiation"), injuries, smoking, air and water pollution, and genetics contribute to speeding up the process of aging.

Aging affects our skin negatively by disturbing the normal function of skin cells. A majority of skin diseases are actually a result of aging. Our skin cells experience enormous amount of damage on a daily basis: they are exposed to constant bombardment of tens of thousands harmful elements each day, causing irregular pigmentation (skin discoloration or hyperpigmentation) and loss of elasticity.

Aging is involved in many other processes as well, such as accumulation of senescent cells, oxidative stress and immune and hormonal system changes. All of these factors contribute to increasing the risk of cancerous diseases.


Effects of ANOVA's reYOUvenation on Anti-Aging

Stem cells can be a keystone solution of future medicine, because they tackle the problems on a cellular level. Expensive beauty creams and cosmetic treatments promise only temporary or superficial solutions to problems related to aging. Most of them work by masking the processes of aging on the surface level, but never work where the aging really happens.

Latest research in regenerative science shows evidence that aging actually takes place on the cellular level. Therefore, this is where the process of aging needs to be altered.

At the German Stem Cell Clinic ANOVA, we offer novel stem cell-based therapies for Anti-Aging and regeneration. Our treatments are one of a kind in Europe and potentially capable of repairing the effects of aging. They act on the cellular level by revitalizing the functions of your body from the inside. Our medical specialists make use of your own stem cells to rejuvenate you. 

All stem cell-based procedures at ANOVA are personalized and in full accordance with the strict quality standards of Germany and the respective healthcare regulations. The medical diagnostics team at ANOVA will help you obtain a general idea of your body’s current health status. We will design a diagnostics and treatment plan specifically to your needs and wishes, and discuss the benefits and risks of stem cell-based therapy as an experimental therapy for anti-aging.

If you would like to learn more about Stem Cell Treatment for Anti-Aging, schedule an appointment today.

This treatment may significantly be enhanced by a therapeutic combination with Infusion Therapy. If you are interested to learn more about the combination therapy, click “I am interested in Infusion Therapy” on our Contact Page.
References and Literature - Stem Cell-based Therapies and Anti-Aging (Click for more)

Park, Byung-Soon, and Won-Serk Kim. "Adipose-Derived Stem Cells and Their Secretory Factors for Skin Aging and Hair Loss." Textbook of Aging Skin (2017): 205-224.

Xu, Dan, and Hidetoshi Tahara. "The role of exosomes and microRNAs in senescence and aging." Advanced drug delivery reviews 65.3 (2013): 368-375.

Prattichizzo, Francesco, et al. "Exosome-based immunomodulation during aging: a nano-perspective on inflamm-aging." Mechanisms of Ageing and Development (2017).

Basu, Joydeep, and John W. Ludlow. "Exosomes for repair, regeneration and rejuvenation." Expert opinion on biological therapy 16.4 (2016): 489-506.

Park, Byung-Soon, and Won-Serk Kim. "Adipose-derived stem cells and their secretory factors for skin aging." Textbook of Aging Skin. Springer Berlin Heidelberg, 2010. 201-212.

Soto-Gamez, A., & Demaria, M. (2017). Therapeutic interventions for aging: the case of cellular senescence. Drug Discovery Today.

Moiseeva, O. et al. (2013) Metformin inhibits the senescence-associated secretory phenotype by interfering with IKK/NF-kB activation. Aging Cell 12, 489–498.

Martin-Montalvo, A. et al. (2013) Metformin improves healthspan and lifespan in mice. Nat. Commun. 4, 2192.

Pitozzi, V. et al. (2013) Chronic resveratrol treatment ameliorates cell adhesion and mitigates the inflammatory phenotype in senescent human fibroblasts. J. Gerontol. A Biol. Sci. Med. Sci. 68, 371–381.

Lim, H. et al. (2015) Effects of flavonoids on senescence-associated secretory phenotype formation from bleomycin-induced senescence in BJ fibroblasts. Biochem. Pharmacol. 96, 337–348.

Toso, A. et al. (2015) Enhancing chemotherapy efficacy by reprogramming the senescence-associated secretory phenotype of prostate tumors: a way to reactivate the antitumor immunity. Oncoimmunology 4, e994380.

Xu, M. et al. (2015) Targeting senescent cells enhances adipogenesis and metabolic function in old age. eLife 4, e12997.

Liou, C.J. et al. (2014) Oral lovastatin attenuates airway inflammation and mucus secretion in ovalbumin-induced murine model of asthma. Allergy Asthma Immunol. Res. 6, 548–557.

Mian, B.M. et al. (2003) Fully human anti-interleukin 8 antibody inhibits tumor growth in orthotopic bladder cancer xenografts via down-regulation of matrix metalloproteases and nuclear factor-kappaB. Clin. Cancer Res. 9, 3167–3175.

Karkera, J. et al. (2011) The anti-interleukin-6 antibody siltuximab down-regulates genes implicated in tumorigenesis in prostate cancer patients from a Phase I study. Prostate 71, 1455–1465.

Pellegrini, G. et al. (2004) Telomerase activity is sufficient to bypass replicative senescence in human limbal and conjunctival but not corneal keratinocytes. Eur. J. Cell Biol. 83, 691–700.

Abad, M. et al. (2013) Reprogramming in vivo produces teratomas and iPS cells with totipotency features. Nature 502, 340–345.

Sagiv, A. et al. (2013) Granule exocytosis mediates immune surveillance of senescent cells. Oncogene 32, 1971–1977.

Demaria, M. et al. (2014) An essential role for senescent cells in optimal wound healing through secretion of PDGF-AA. Dev. Cell 31, 722–733.

Pei, Ming. "Environmental preconditioning rejuvenates adult stem cells' proliferation and chondrogenic potential." Biomaterials (2016).

Vañó-Galván, S., and F. Camacho. "New Treatments for Hair Loss." Actas Dermo-Sifiliográficas (English Edition) (2017).

Anitua, Eduardo, Ander Pino, and Gorka Orive. "Opening new horizons in regenerative dermatology using platelet‐based autologous therapies." International journal of dermatology 56.3 (2017): 247-251.

Patient Services at ANOVA Institute for Regenerative Medicine

Located in the center of Germany, quick access by car or train from anywhere in Europe

Simple access worldwide, less than 20 minutes from Frankfurt Airport

Individualized therapy with state-of-the-art stem cell products

Individually planned diagnostic work-up which include world-class MRI and CT scans

German high quality standard on safety and quality assurance

Personal service with friendly, dedicated Patient Care Managers

Scientific collaborations with academic institutions to assure you the latest regenerative medical programs