Stem Cell-based Therapies for Alzheimer’s Disease
at ANOVA IRM in Offenbach, Germany

Alzheimer´s Disease (AD) is a disease many people are affected by. The progressive loss of memory and decreasing levels of concentration are the main symptoms and cause anxiety and uncertainty in patients and their family and friends. There is currently no cure or treatment that could stop the progression of AD. Treatment consists mainly of dealing with the various symptoms. Scientists and researchers worldwide search for a curative treatment and options to prevent AD progression.

An encouraging approach are stem cell-based therapies. Stem cell therapies have demonstrated the ability to stimulate repair and regenerative processes in damaged neurons. This can open the door to new treatment options that may be related with better clinical outcome than the currently available medication options.

Alzheimer’s Disease
Diagnostics - Treatment - Medication - Stem Cell Therapies

On this page we inform you about AD covering an overview on important aspects of causes, treatment options, precision diagnostics as well as our stem cell-based therapies that we offer in Offenbach (near Frankfurt am Main airport), Germany.

Jump directly to the following topics:

MSC-secretome-exosome-therapy | Germany

MSC secretome - exosome - therapy
ANOVA IRM - Germany

Conventional AD Therapies vs. Stem Cell Therapy

Currently, there is neither a cure for Alzheimer’s disease nor a way to stop or slow its progression. Medication and treatments available (drug and non-drug options) are aimed at helping to treat symptoms.

Conventional Therapies are e.g.:

  • antibody-based treatment of early AD,
  • drugs to support memory function and sleep patterns,
  • behavioral therapy and
  • alternative treatments mostly nutritional supplementation (Huperzine A, caprylic acid and coconut oil, omega-3 fatty acids, co-enzyme Q10, phosphatidyl-serine, coral calcium, tramiprosate, Ginkgo biloba).

 

ANOVA IRM Germany Alzheimers disease AD brain

Brain degeneration in the course of Alzheimer's Disease
ANOVA IRM Germany, © Garrondo https://en.wikipedia.org/wiki/Alzheimer%27s_disease

Stem cell research has allowed ANOVA, a German Stem Cell Clinic in the heart of Europe near Frankfurt/Main airport, to offer a novel treatment with a new therapeutical approach: The ANOVA Stem Cell Secretome is a cell free and promising treatment option for AD.

Call us today
, whether you wish to apply for a treatment, or simply receive more information.

Stem Cell Treatments for early AD at
ANOVA Institute for Regenerative Medicine - Offenbach, Germany
Secretome/Exosomes of MSC

Potency Hypothesis of Stem Cell Therapies

Stem cells possess the potential to communicate with the immune cells that elicit inflammation and by natural, so far not understood mechanisms may inhibit this immune-over-reaction. Furthermore, stem cells have the ability to stimulate regeneration of tissue thereby counteracting the loss of function.

MSEC - Mesenchymal Stem Cell Secretome - Exosomes - Autologous

As AD is a chronic, so far not curable disease, we on-goingly treat patients with early AD with MSEC (secretome, exosomes, EVs) of mesenchymal stem cells (MSC, AD-MSC, adipose-derived, fat-derived stem cells) which we harvest from the patients belly in a mini-liposuction (very brief and limited liposuction) under slight sedation. Worldwide, ANOVA is the first stem cell clinic to acquire legal permission form the responsible governmental authorities and therefore, offers high quality, safe and legally-controlled autologous (own) exosome-containing secretome.

The main advantage of MSEC is that in contrast to live stem cells which would loose their therapeutic potency, can be frozen without loss of exosomes. This enables us to produce 10-20 injection doses from one liposuction which can then be administered over a longer treatment period. This is especially advantageous for repeated stimulation of cell survival and regeneration in AD. What a Secretome/Exosome is and how they compare is explained on our overview page. 

MSC-secretome-exosome-therapy | Germany

MSC secretome - exosome - therapy
ANOVA IRM - Germany

Therapy Workflow for Early Alzheimer's Disease

The precise workflow is described in detail on the stem cell- specific pages of BMC, Secretome/Exosomes and PRP (as combination therapy).

All therapies are divided into phases such as evaluation of the medical history (we analyze your current therapies and medical records), initial counseling and evaluation of potential, patient-individual benefit of a stem cell therapy (indication statement), preliminary examinations, diagnostics, consultation on all therapy options, preparation of an individual treatment plan including cost estimate, harvesting of tissue, production of the stem cell product, quality control of the product and application.

Unfortunately, we only treat patients in an early stage of AD and according to the risk-benefit ratio, we cannot treat children or pregnant women. In addition, other factors can also be exclusion criteria.

How Long does a Stem Cell Therapy Take?

The initial analyses and counselling can be done without you having to travel to Offenbach (near Frankfurt/Main, Germany). This period can be 2 weeks up to months depending on the availability of patients slots. If you live further away, we will conduct the initial discussions by telephone or video conference. For the actual treatment, you will travel to Offenbach.

Secretome/Exosome-therapy:

Preparation and harvest of the fat (mini-liposuction) need once 2 days (consecutive days) in Offenbach, followed by enrichment of the mesenchymal stem cells (Secretome/Exosome) and quality control. Approximately 4 weeks after the isolation, the therapy begins according to the therapy plan determined with you. You will then come to Offenbach am Main (Germany) in regular intervals for the application. Depending on where you live and your travelling capacity and restrictions the treatment pattern is adjusted to your needs and abilities. The shelf life of the secretome (exosomes) is 2 years. As AD is not cureable with any treatment, we recommend a double-lipo which produces 20 doses for a continuous treatment over 2 years. Thereafter, a new liposuction has to be performed.

How Much Does Stem Cell Treatment Cost?

Our treatments are always tailored to your specific situation, disease, stage and other factors. The therapies differ in the product used (BMC, secretome, PRP or hyaluronic acid), the frequency of treatment as well as the further examinations and your sedation and anesthesia wishes. A treatment for AD will cost above ten thousand euros. You will receive a cost estimate for all treatments in advance so that you can accurately estimate what a treatment would cost in your individual case.

Does my Health Insurance Cover the Therapy Costs?

Unfortunately, at the moment it is assumed that health insurance companies do not cover the costs of experimental therapies (BMC, secretome, PRP, micro-fracture technique), i.e. you will have to bear the costs entirely yourself.

                                      
Discuss your case free-of-charge with our scientific experts
+49 (0) 69 50 50 00 944

What is Alzheimer's Disease?
The Disease of Oblivion

AD is the most common reason for dementia worldwide and make 50-70% of all dementias. It is a neurodegenerative illness, which means that it is caused by deterioration of brain cells, called neurons. These neurons are no longer a part of the neuronal network and with that the sufficiency of the cerebral capacity decreases, resulting in typical symptoms like fading memories, decreasing recognition of people and many other symptoms discussed below.

Most people affected are beyond the age of 65, but about 7% of all AD diagnosis define the so called pre-senile form, where also way younger people get the first symptoms. In such cases genetic factors play a large role.

The prevalence for people older than 80 years of suffering from AD is almost 40%, so many people will be affected by this “disease of oblivion”. The life expectancy is about 8 years from diagnosis, due to the progredient needed care and more often occurred infections i.e. pneumonia.

Despite these large numbers of new diagnoses every year, there is still no cure and the treatment options are poor. The market currently offers few treatment options for this severe disease. The main focus is dealing with the symptoms, like depressive episodes, sleeping disorders and restlessness. The medications in the field of anti-dementive drugs are given to try to slow down the progress of the dementia, but it is also not a curative approach.

Stem Cell-based Therapies for Alzheimer's Disease

Histological tests of people with AD revealed that their brains have areas of what is called β-amyloid-plaques. There is an imbalance of production and reduction of this protein, which is highly suspected to play a large role in developing the disease.

Latest research has shown that human mesenchymal stem cells derived from adipose tissue, excrete an enzyme (called neprilysin) responsible for clearing the brain tissue from β-amyloid-plaques. Additionally, stem cell-based therapies have the ability to stimulate repair processes and regeneration in neurons which are already damaged.

Based on these findings it is implicated that stem cell-based therapies can help to keep the balance of increasing and decreasing of plaques and therefore help to treat Alzheimer´s Disease.

Treating Early-Stage Alzheimer's Disease at ANOVA

Our team focusses on offering our patients a personalized treatment in regenerative medicine. We aim to combine well-established therapies with novel and promising therapies to obtain the best possible outcome. Just as importantly, a full diagnostic work-up is a necessity to fully understand the patient’s current state. The combination with diagnostics with state-of-the-art technology and evidence-based effective therapies make our treatments so special. But, as with any type of treatment, experimental therapy such as stem cell-based therapy cannot promise any success. Before the attending physician can suggest an experimental therapy, he or she must individually check whether benefits of the treatment are given for the patient and whether these benefits outweigh the potential risks. Make an appointment today to learn more about your treatment options at ANOVA.

Discuss your case charge-free with our scientific experts
+49 (0) 69 50 50 00 944

FAQ: Stem Cell-based Therapies for Alzheimer’s Disease

What are the symptoms of Alzheimer's disease?

Besides dementia, AD has many symptoms.

Early occurring symptoms:

  • Troubles memorizing new contents
  • Temporal and spatial disorientation 
  • Problems in concentration
  • Hyposmia
  • Depressive symptoms
  • Reduced Motivation 

Late occurring symptoms:

  • Fading memories
  • Troubles recognizing people 
  • Disorientation regarding person and situation
  • Apraxia, Alexia, Agnosia
  • Neuro-psychiatric symptoms
  • Sleeping disorders

These are only few of the many symptoms of Alzheimer´s disease. Every patient is different and experiences the disease differently.

What are the causes for Alzheimer's disease?

The causes of AD are mainly not known. Nevertheless, there are morphologic correlations for the symptoms. In MRI or CT scans of patients with AD a severe brain atrophy is prevalent, due to the progredient loose of neuronal networks. 

Histo-pathological examination also reveals the so called amyloid-plaques and tau-proteins which are also important for diagnostic purposes. 

For a conclusive clarification of the causes, more research is needed. 

What are the risk factors?

There are not many risk factors identified yet. 

AD is known to be more likely in people with first grade relatives with an AD diagnosis, which implies that it is a genetic disease. Also, a genetic variation of the apo-lipoprotein E 4 (ApoE4) is discussed to be a risk factor. From looking at affected people in younger ages (under 65 years), it can be said that AD has an especially large hereditary component.

The only statistically identified risk factor is age, since most of patients are older than 65.

What Other Treatments are Available?

The treatment of AD consists of many components, but none of them will cure the disease. 

Anti-Dementive Drugs: 

With dementia comes a decreased level of acetylcholine, which is an important transmitter for mental and physical functions of our body. Acetylcholinesterase-inhibitors inhibit the protein responsible dismantling this transmitter and cause higher levels of acetylcholine.  Unfortunately, Acetylcholinesterase-inhibitors have several side effects such as bradycardia, disturbance of heart rhythm, vomiting, diarrhea and gastroduodenal ulceration.

Also, higher levels of the transmitter glutamate were noticed, so another column is the therapy with NMDA-antagonists to reduce the effect with blocking their receptors.

Both are given to try to slow down the progression of the illness. 

Anti-Depressants:

Many patients with AD develop depressive symptoms. When suffering from these, antidepressants may be another option for the patient. 

Also, restlessness is a common symptom which can be treated with drugs.

Neuroleptica: 

Neuroleptica can be used mainly for reducing sleeping disorders, which impair many patients with AD.

All these options are only treating symptoms and are not able to cure the disease. 

  1. Murphy JM, Fink DJ, Hunziker EB, et al. Stem cell therapy in a caprine model of osteoarthritis. Arthritis Rheum. 2003;48:3464–74.
  2. Lee KB, Hui JH, Song IC, Ardany L, et al. Injectable mesenchymal stem cell therapy for large cartilage defects—a porcine model. Stem Cell. 2007;25:2964–71.
  3. Saw KY, Hussin P, Loke SC, et al. Articular cartilage regeneration with autologous marrow aspirate and hyaluronic acid: an experimental study in a goat model. Arthroscopy. 2009;25(12):1391–400.
  4. Black L, Gaynor J, Adams C, et al. Effect of intra-articular injection of autologous adipose-derived mesenchymal stem and regenerative cells on clinical signs of chronic osteoarthritis of the elbow joint in dogs. Vet Ther. 2008;9:192-200.
  5. Centeno C, Busse D, Kisiday J, et al. Increased knee cartilage volume in degenerative joint disease using percutaneously implanted, autologous mesenchymal stem cells. Pain Physician. 2008;11(3):343–53.
  6. Centeno C, Kisiday J, Freeman M, et al. Partial regeneration of the human hip via autologous bone marrow nucleated cell transfer: a case study. Pain Physician. 2006;9:253–6.
  7. Centeno C, Schultz J, Cheever M. Safety and complications reporting on the re-implantation of culture-expanded mesenchymal stem cells using autologous platelet lysate technique. Curr Stem Cell. 2011;5(1):81–93.
  8. Pak J. Regeneration of human bones in hip osteonecrosis and human cartilage in knee osteoarthritis with autologous adipose derived stem cells: a case series. J Med Case Rep. 2001;5:296.
  9. Kuroda R, Ishida K, et al. Treatment of a full-thickness articular cartilage defect in the femoral condyle of an athlete with autologous bone-marrow stromal cells. Osteoarthritis Cartilage. 2007;15:226–31.
  10. Emadedin M, Aghdami N, Taghiyar L, et al. Intra-articular injection of autologous mesenchymal stem cells in six patients with knee osteoarthritis. Arch Iran Med. 2012;15(7):422–8.
  11. Saw KY et al. Articular cartilage regeneration with autologous peripheral blood stem cells versus hyaluronic acid: a randomized controlled trial. Arthroscopy. 2013;29(4):684–94.
  12. Vangsness CT, Farr J, Boyd J, et al. Adult human mesenchymal stem cells delivered via intra-articular injection to the knee following partial medial meniscectomy. J Bone Joint Surg. 2014;96(2):90–8.
  13. Freitag, Julien, et al. "Mesenchymal stem cell therapy in the treatment of osteoarthritis: reparative pathways, safety and efficacy–a review." BMC musculoskeletal disorders 17.1 (2016): 230.
  14. Maumus, Marie, Christian Jorgensen, and Danièle Noël. "Mesenchymal stem cells in regenerative medicine applied to rheumatic diseases: role of secretome and exosomes." Biochimie 95.12 (2013): 2229-2234.
  15. Dostert, Gabriel, et al. "How do mesenchymal stem cells influence or are influenced by microenvironment through extracellular vesicles communication?." Frontiers in Cell and Developmental Biology 5 (2017).
  16. Dostert, Gabriel, et al. "How do mesenchymal stem cells influence or are influenced by microenvironment through extracellular vesicles communication?." Frontiers in Cell and Developmental Biology 5 (2017).
  17. Chaparro, Orlando, and Itali Linero. "Regenerative Medicine: A New Paradigm in Bone Regeneration." (2016).
  18. Toh, Wei Seong, et al. "MSC exosome as a cell-free MSC therapy for cartilage regeneration: Implications for osteoarthritis treatment." Seminars in Cell & Developmental Biology. Academic Press, 2016.
  19. Chaparro, Orlando, and Itali Linero. "Regenerative Medicine: A New Paradigm in Bone Regeneration." (2016).
  20. S. Koelling, J. Kruegel, M. Irmer, J.R. Path, B. Sadowski, X. Miro, et al., Migratory chondrogenic progenitor cells from repair tissue during the later stages of human osteoarthritis, Cell Stem Cell 4 (2009) 324–335.
  21. B.A. Jones, M. Pei, Synovium-Derived stem cells: a tissue-Specific stem cell for cartilage engineering and regeneration, Tissue Eng. B: Rev. 18 (2012) 301–311.
  22. W. Ando, J.J. Kutcher, R. Krawetz, A. Sen, N. Nakamura, C.B. Frank, et al., Clonal analysis of synovial fluid stem cells to characterize and identify stable mesenchymal stromal cell/mesenchymal progenitor cell phenotypes in a porcine model: a cell source with enhanced commitment to the chondrogenic lineage, Cytotherapy 16 (2014) 776–788.
  23. K.B.L. Lee, J.H.P. Hui, I.C. Song, L. Ardany, E.H. Lee, Injectable mesenchymal stem cell therapy for large cartilage defects—a porcine model, Stem Cells 25 (2007) 2964–2971.
  24. W.-L. Fu, C.-Y. Zhou, J.-K. Yu, A new source of mesenchymal stem cells for articular cartilage repair: mSCs derived from mobilized peripheral blood share similar biological characteristics in vitro and chondrogenesis in vivo as MSCs from bone marrow in a rabbit model, Am. J. Sports Med. 42 (2014) 592–601.
  25. X. Xie, Y. Wang, C. Zhao, S. Guo, S. Liu, W. Jia, et al., Comparative evaluation of MSCs from bone marrow and adipose tissue seeded in PRP-derived scaffold for cartilage regeneration, Biomaterials 33 (2012) 7008–7018.
  26. E.-R. Chiang, H.-L. Ma, J.-P. Wang, C.-L. Liu, T.-H. Chen, S.-C. Hung, Allogeneic mesenchymal stem cells in combination with hyaluronic acid for the treatment of osteoarthritis in rabbits, PLoS One 11 (2016) e0149835.
  27. H. Nejadnik, J.H. Hui, E.P. Feng Choong, B.-C. Tai, E.H. Lee, Autologous bone marrow–derived mesenchymal stem cells versus autologous chondrocyte implantation: an observational cohort study, Am. J. Sports Med. 38 (2010) 1110–1116.
  28. I. Sekiya, T. Muneta, M. Horie, H. Koga, Arthroscopic transplantation of synovial stem cells improves clinical outcomes in knees with cartilage defects, Clin. Orthop. Rel. Res. 473 (2015) 2316–2326.
  29. Y.S. Kim, Y.J. Choi, Y.G. Koh, Mesenchymal stem cell implantation in knee osteoarthritis: an assessment of the factors influencing clinical outcomes, Am. J. Sports Med. 43 (2015) 2293–2301.
  30. W.-L. Fu, Y.-F. Ao, X.-Y. Ke, Z.-Z. Zheng, X. Gong, D. Jiang, et al., Repair of large full-thickness cartilage defect by activating endogenous peripheral blood stem cells and autologous periosteum flap transplantation combined with patellofemoral realignment, Knee 21 (2014) 609–612.
  31. Y.-G. Koh, O.-R. Kwon, Y.-S. Kim, Y.-J. Choi, D.-H. Tak, Adipose-derived mesenchymal stem cells with microfracture versus microfracture alone: 2-year follow-up of a prospective randomized trial, Arthrosc. J. Arthrosc. Relat. Surg. 32 (2016) 97–109.
  32. T.S. de Windt, L.A. Vonk, I.C.M. Slaper-Cortenbach, M.P.H. van den Broek, R. Nizak, M.H.P. van Rijen, et al., Allogeneic mesenchymal stem cells stimulate cartilage regeneration and are safe for single-Stage cartilage repair in humans upon mixture with recycled autologous chondrons, Stem Cells (2016) (n/a-n/a).
  33. L. da Silva Meirelles, A.M. Fontes, D.T. Covas, A.I. Caplan, Mechanisms involved in the therapeutic properties of mesenchymal stem cells, Cytokine Growth Factor Rev. 20 (2009) 419–427.
  34. W.S. Toh, C.B. Foldager, M. Pei, J.H.P. Hui, Advances in mesenchymal stem cell-based strategies for cartilage repair and regeneration, Stem Cell Rev. Rep. 10 (2014) 686–696.
  35. R.C. Lai, F. Arslan, M.M. Lee, N.S.K. Sze, A. Choo, T.S. Chen, et al., Exosome secreted by MSC reduces myocardial ischemia/reperfusion injury, Stem Cell Res. 4 (2010) 214–222.
  36. S. Zhang, W.C. Chu, R.C. Lai, S.K. Lim, J.H.P. Hui, W.S. Toh, Exosomes derived from human embryonic mesenchymal stem cells promote osteochondral regeneration, Osteoarthr. Cartil. 24 (2016) 2135–2140.
  37. S. Zhang, W. Chu, R. Lai, J. Hui, E. Lee, S. Lim, et al., 21 – human mesenchymal stem cell-derived exosomes promote orderly cartilage regeneration in an immunocompetent rat osteochondral defect model, Cytotherapy 18 (2016) S13.
  38. C.T. Lim, X. Ren, M.H. Afizah, S. Tarigan-Panjaitan, Z. Yang, Y. Wu, et al., Repair of osteochondral defects with rehydrated freeze-Ddried oligo
  39. [poly(ethylene glycol) fumarate] hydrogels seeded with bone marrow mesenchymal stem cells in a porcine model, Tissue Eng. A 19 (2013) 1852–1861.
  40. A. Gobbi, G. Karnatzikos, S.R. Sankineani, One-step surgery with multipotent stem cells for the treatment of large full-thickness chondral defects of the knee, Am. J. Sports Med. 42 (2014) 648–657.
  41. A. Gobbi, C. Scotti, G. Karnatzikos, A. Mudhigere, M. Castro, G.M. Peretti, One-step surgery with multipotent stem cells and Hyaluronan-based scaffold for the treatment of full-thickness chondral defects of the knee in patients older than 45 years, Knee Surg. Sports Traumatol. Arthrosc. (2016) 1–8.
  42. A. Gobbi, G. Karnatzikos, C. Scotti, V. Mahajan, L. Mazzucco, B. Grigolo, One-step cartilage repair with bone marrow aspirate concentrated cells and collagen matrix in full-thickness knee cartilage lesions: results at 2-Year follow-up, Cartilage 2 (2011) 286–299.
  43. K.L. Wong, K.B.L. Lee, B.C. Tai, P. Law, E.H. Lee, J.H.P. Hui, Injectable cultured bone marrow-derived mesenchymal stem cells in varus knees with cartilage defects undergoing high tibial osteotomy: a prospective, randomized controlled clinical trial with 2 years’ follow-up, Arthrosc. J. Arthrosc. Relat. Surg. 29 (2013) 2020–2028.
  44. J.M. Hare, J.E. Fishman, G. Gerstenblith, et al., Comparison of allogeneic vs autologous bone marrow–derived mesenchymal stem cells delivered by transendocardial injection in patients with ischemic cardiomyopathy: the poseidon randomized trial, JAMA 308 (2012) 2369–2379.
  45. L. Wu, J.C.H. Leijten, N. Georgi, J.N. Post, C.A. van Blitterswijk, M. Karperien, Trophic effects of mesenchymal stem cells increase chondrocyte proliferation and matrix formation, Tissue Eng. A 17 (2011) 1425–1436.
  46. L. Wu, H.-J. Prins, M.N. Helder, C.A. van Blitterswijk, M. Karperien, Trophic effects of mesenchymal stem cells in chondrocyte Co-Cultures are independent of culture conditions and cell sources, Tissue Eng. A 18 (2012) 1542–1551.
  47. S.K. Sze, D.P.V. de Kleijn, R.C. Lai, E. Khia Way Tan, H. Zhao, K.S. Yeo, et al., Elucidating the secretion proteome of human embryonic stem cell-derived mesenchymal stem cells, Mol. Cell. Proteomics 6 (2007) 1680–1689.
  48. M.B. Murphy, K. Moncivais, A.I. Caplan, Mesenchymal stem cells: environmentally responsive therapeutics for regenerative medicine, Exp. Mol. Med. 45 (2013) e54.
  49. M.J. Lee, J. Kim, M.Y. Kim, Y.-S. Bae, S.H. Ryu, T.G. Lee, et al., Proteomic analysis of tumor necrosis factor--induced secretome of human adipose tissue-derived mesenchymal stem cells, J. Proteome Res. 9 (2010) 1754–1762.
  50. S. Bruno, C. Grange, M.C. Deregibus, R.A. Calogero, S. Saviozzi, F. Collino, et al., Mesenchymal stem cell-derived microvesicles protect against acute tubular injury, J. Am. Soc. Nephrol. 20 (2009) 1053–1067.
  51. M. Yá˜nez-Mó, P.R.-M. Siljander, Z. Andreu, A.B. Zavec, F.E. Borràs, E.I. Buzas, et al. Biological properties of extracellular vesicles and their physiological functions (2015).
  52. C. Lawson, J.M. Vicencio, D.M. Yellon, S.M. Davidson, Microvesicles and exosomes: new players in metabolic and cardiovascular disease, J. Endocrinol. 228 (2016) R57–R71.
  53. A.G. Thompson, E. Gray, S.M. Heman-Ackah, I. Mager, K. Talbot, S.E. Andaloussi, et al., Extracellular vesicles in neurodegenerative diseas—pathogenesis to biomarkers, Nat. Rev. Neurol. 12 (2016) 346–357.
  54. I.E.M. Bank, L. Timmers, C.M. Gijsberts, Y.-N. Zhang, A. Mosterd, J.-W. Wang, et al., The diagnostic and prognostic potential of plasma extracellular vesicles for cardiovascular disease, Expert Rev. Mol. Diagn. 15 (2015) 1577–1588.
  55. T. Kato, S. Miyaki, H. Ishitobi, Y. Nakamura, T. Nakasa, M.K. Lotz, et al., Exosomes from IL-1 stimulated synovial fibroblasts induce osteoarthritic changes in articular chondrocytes, Arthritis. Res. Ther. 16 (2014) 1–11.
  56. R.W.Y. Yeo, S.K. Lim, Exosomes and their therapeutic applications, in: C. Gunther, A. Hauser, R. Huss (Eds.), Advances in Pharmaceutical Cell TherapyPrinciples of Cell-Based Biopharmaceuticals, World Scientific, Singapore, 2015, pp. 477–491.
  57. X. Qi, J. Zhang, H. Yuan, Z. Xu, Q. Li, X. Niu, et al., Exosomes secreted by human-Induced pluripotent stem cell-derived mesenchymal stem cells repair critical-sized bone defects through enhanced angiogenesis and osteogenesis in osteoporotic rats, Int. J. Biol. Sci. 12 (2016) 836–849.
  58. R.C. Lai, F. Arslan, S.S. Tan, B. Tan, A. Choo, M.M. Lee, et al., Derivation and characterization of human fetal MSCs: an alternative cell source for large-scale production of cardioprotective microparticles, J. Mol. Cell. Cardiol. 48 (2010) 1215–1224.
  59. Y. Zhou, H. Xu, W. Xu, B. Wang, H. Wu, Y. Tao, et al., Exosomes released by human umbilical cord mesenchymal stem cells protect against cisplatin-induced renal oxidative stress and apoptosis in vivo and in vitro, Stem Cell Res. Ther. 4 (2013) 1–13.
  60. Y. Qin, L. Wang, Z. Gao, G. Chen, C. Zhang, Bone marrow stromal/stem cell-derived extracellular vesicles regulate osteoblast activity and differentiation in vitro and promote bone regeneration in vivo, Sci. Rep. 6 (2016) 21961.
  61. M. Nakano, K. Nagaishi, N. Konari, Y. Saito, T. Chikenji, Y. Mizue, et al., Bone marrow-derived mesenchymal stem cells improve diabetes-induced cognitive impairment by exosome transfer into damaged neurons and astrocytes, Sci. Rep. 6 (2016) 24805.
  62. K. Nagaishi, Y. Mizue, T. Chikenji, M. Otani, M. Nakano, N. Konari, et al., Mesenchymal stem cell therapy ameliorates diabetic nephropathy via the paracrine effect of renal trophic factors including exosomes, Sci. Rep. 6 (2016) 34842.
  63. S.R. Baglio, K. Rooijers, D. Koppers-Lalic, F.J. Verweij, M. Pérez Lanzón, N. Zini, et al., Human bone marrow- and adipose-mesenchymal stem cells secrete exosomes enriched in distinctive miRNA and tRNA species, Stem Cell Res. Ther. 6 (2015) 1–20.
  64. T. Chen, R. Yeo, F. Arslan, Y. Yin, S. Tan, Efficiency of exosome production correlates inversely with the developmental maturity of MSC donor, J. Stem Cell Res. Ther. 3 (2013) 2.
  65. R.C. Lai, S.S. Tan, B.J. Teh, S.K. Sze, F. Arslan, D.P. de Kleijn, et al., Proteolytic potential of the MSC exosome proteome: implications for an exosome-mediated delivery of therapeutic proteasome, Int. J. Proteomics 2012 (2012) 971907.
  66. T.S. Chen, R.C. Lai, M.M. Lee, A.B.H. Choo, C.N. Lee, S.K. Lim, Mesenchymal stem cell secretes microparticles enriched in pre-microRNAs, Nucleic Acids Res. 38 (2010) 215–224.
  67. R.W. Yeo, R.C. Lai, K.H. Tan, S.K. Lim, Exosome: a novel and safer therapeutic refinement of mesenchymal stem cell, J. Circ. Biomark. 1 (2013) 7.
  68. R.C. Lai, R.W. Yeo, S.K. Lim, Mesenchymal stem cell exosomes, Semin. Cell Dev. Biol. 40 (2015) 82–88.
  69. B. Zhang, R.W. Yeo, K.H. Tan, S.K. Lim, Focus on extracellular vesicles: therapeutic potential of stem cell-derived extracellular vesicles, Int. J. Mol. Sci. 17 (2016) 174.
  70. Hu G-w, Q. Li, X. Niu, B. Hu, J. Liu, Zhou S-m, et al., Exosomes secreted by human-induced pluripotent stem cell-derived mesenchymal stem cells attenuate limb ischemia by promoting angiogenesis in mice, Stem Cell Res. Ther. 6 (2015) 1–15.
  71. J. Zhang, J. Guan, X. Niu, G. Hu, S. Guo, Q. Li, et al., Exosomes released from human induced pluripotent stem cells-derived MSCs facilitate cutaneous wound healing by promoting collagen synthesis and angiogenesis, J. Transl. Med. 13 (2015) 1–14.
  72. B. Zhang, M. Wang, A. Gong, X. Zhang, X. Wu, Y. Zhu, et al., HucMSC-exosome mediated-Wnt4 signaling is required for cutaneous wound healing, Stem Cells 33 (2015) 2158–2168.
  73. B. Zhang, Y. Yin, R.C. Lai, S.S. Tan, A.B.H. Choo, S.K. Lim, Mesenchymal stem cells secrete immunologically active exosomes, Stem Cells Dev. 23 (2013) 1233–1244.
  74. C.Y. Tan, R.C. Lai, W. Wong, Y.Y. Dan, S.-K. Lim, H.K. Ho, Mesenchymal stem cell-derived exosomes promote hepatic regeneration in drug-induced liver injury models, Stem Cell Res. Ther. 5 (2014) 1–14.
  75. C. Lee, S.A. Mitsialis, M. Aslam, S.H. Vitali, E. Vergadi, G. Konstantinou, et al., Exosomes mediate the cytoprotective action of mesenchymal stromal cells on hypoxia-induced pulmonary hypertension, Circulation 126 (2012) 2601–2611.
  76. B. Yu, H. Shao, C. Su, Y. Jiang, X. Chen, L. Bai, et al., Exosomes derived from MSCs ameliorate retinal laser injury partially by inhibition of MCP-1, Sci. Rep. 6 (2016) 34562.
  77. Jo CH, Lee YG, Shin WH, et al. Intra-articular injection of mesenchymal stem cells for the treatment of osteoarthritis of the knee: a proof of concept clinical trial. Stem Cells. 2014;32(5):1254–66.
  78. Vega, Aurelio, et al. Treatment of knee osteoarthritis with allogeneic bone marrow mesenchymal stem cells: a randomized controlled trial. Transplantation. 2015;99(8):1681–90.
  79. Davatchi F, Sadeghi-Abdollahi B, Mohyeddin M, et al. Mesenchymal stem cell therapy for knee osteoarthritis. Preliminary report of four patients. Int J Rheum Dis. 2011;14(2):211–5
  80. Hernigou P, Flouzat Lachaniette CH, Delambre J, et al. Biologic augmentation of rotator cuff repair with mesenchymal stem cells during arthroscopy improves healing and prevents further tears: a case- controlled study. Int Orthop. 2014;38(9):1811–1818
  81. Galli D, Vitale M, Vaccarezza M. Bone marrow-derived mesenchymal cell differentiation toward myogenic lineages: facts and perspectives. Biomed Res Int. 2014;2014:6.
  82. Beitzel K, Solovyova O, Cote MP, et al. The future role of mesenchymal Stem cells in The management of shoulder disorders. Arthroscopy. 2013;29(10):1702–1711.
  83. Isaac C, Gharaibeh B, Witt M, Wright VJ, Huard J. Biologic approaches to enhance rotator cuff healing after injury. J Shoulder Elbow Surg. 2012;21(2):181–190.
  84. Malda, Jos, et al. "Extracellular vesicles [mdash] new tool for joint repair and regeneration." Nature Reviews Rheumatology (2016).

  1. Rubio-Azpeitia E, Andia I. Partnership between platelet-rich plasma and mesenchymal stem cells: in vitro experience. Muscles Ligaments Tendons J. 2014;4(1):52–62.

  1. Xu, Ming, et al. "Transplanted senescent cells induce an osteoarthritis-like condition in mice." The Journals of Gerontology Series A: Biological Sciences and Medical Sciences (2016): glw154.
  2. McCulloch, Kendal, Gary J. Litherland, and Taranjit Singh Rai. "Cellular senescence in osteoarthritis pathology." Aging Cell (2017).

Patient Services at ANOVA Institute for Regenerative Medicine

  • Located in the center of Germany, quick access by car or train from anywhere in Europe
  • Simple access worldwide, less than 20 minutes from Frankfurt Airport
  • Individualized therapy with state-of-the-art stem cell products
  • Individually planned diagnostic work-up which include world-class MRI and CT scans
  • German high quality standard on safety and quality assurance
  • Personal service with friendly, dedicated Patient Care Managers
  • Scientific collaborations with academic institutions to assure you the latest regenerative medical programs